

Recent Trends in Homopteran Entomofauna in Agroecosystems: Diversity, Distribution, and Ecological Significance

Sakthi Saravanabavan M, R. Jeyachandra

^{1,2}Research Department of Zoology, Aditanar College, Tiruchendur – 628216, Affiliated to Manonmaniam Sundaranar University, Abishekappatti, Tirunelveli– 12, Tamil Nadu, India

Abstract

Homopteran insects constitute an important group of entomofauna in agricultural ecosystems due to their direct and indirect impacts on crop productivity. This order includes economically significant insects such as aphids, leafhoppers, planthoppers, whiteflies, and scale insects, many of which function as major crop pests and vectors of plant diseases. In recent years, changes in agricultural practices, climate variability, and intensification of cropping systems have influenced the diversity, abundance, and distribution of homopteran insects. The present study reviews recent trends in homopteran entomofauna within agroecosystems, focusing on their biodiversity patterns, population dynamics, and ecological roles. Emphasis is placed on their interaction with host plants, role in pest outbreaks, and contribution to agroecosystem imbalance. The study also highlights the influence of modern agricultural practices on homopteran diversity and the need for sustainable management strategies. Understanding recent trends in homopteran populations is essential for developing effective integrated pest management approaches and ensuring long-term agricultural sustainability.

Keywords: Homoptera; Entomofauna; Agroecosystem; Aphids; Leafhoppers; Pest dynamics; Integrated pest management

Introduction

Entomofauna play a crucial role in shaping the structure and functioning of agricultural ecosystems, with insects influencing crop growth, productivity, and ecological balance. Among various insect orders, Homoptera represents a significant group due to its close association with cultivated plants. Homopteran insects, including aphids, whiteflies, leafhoppers, planthoppers, and scale insects, are predominantly sap feeders and are widely distributed across agroecosystems

worldwide. Their feeding behavior often leads to direct crop damage through nutrient loss, honeydew secretion, and growth retardation.

In addition to direct damage, many homopteran species act as efficient vectors of plant pathogens, particularly viruses, phytoplasmas, and bacteria. This vectoring ability amplifies their economic importance, as even low population densities can result in severe yield losses. Over the past few decades, the population dynamics of homopteran insects have undergone notable changes due to shifts in cropping patterns, increased pesticide use, climate change, and habitat modification. Warmer temperatures and extended growing seasons have favored rapid reproduction and survival of homopteran species, leading to frequent pest outbreaks.

Recent trends indicate an increase in homopteran dominance in intensively managed agroecosystems, often accompanied by a decline in natural enemy populations. The development of pesticide resistance and resurgence of pest populations further complicate their management. Studying the diversity and ecological trends of homopteran entomofauna is therefore essential for understanding agroecosystem health and stability. Such knowledge provides a scientific basis for designing sustainable pest management strategies that minimize ecological disruption while maintaining crop productivity.

Diversity and Taxonomic Composition of Homoptera in Agroecosystems

Homopteran diversity in agroecosystems varies significantly depending on crop type, climatic conditions, and agricultural practices. The order Homoptera comprises several families such as Aphididae, Cicadellidae, Delphacidae, Aleyrodidae, and Coccidae, which are commonly associated with field crops, horticultural crops, and plantation systems. Aphids and leafhoppers are among the most dominant groups due to their high reproductive potential and adaptability to diverse host plants. Species richness is generally higher in diversified cropping systems compared to monoculture fields.

Recent studies have reported an increase in homopteran species abundance in intensively cultivated areas, particularly in cereal and vegetable crops. The availability of continuous host plants and favorable microclimatic conditions promotes rapid population buildup. Seasonal

variation also plays a key role, with peak diversity often observed during vegetative and flowering stages of crops. Understanding the taxonomic composition of homopteran entomofauna is vital for identifying key pest species and assessing their potential impact on agroecosystems.

Population Dynamics and Seasonal Trends of Homopteran Insects

Population dynamics of homopteran insects are strongly influenced by environmental factors such as temperature, humidity, rainfall, and crop phenology. Warm and dry conditions often favor rapid multiplication of aphids and whiteflies, leading to population explosions. Seasonal trends show that homopteran populations typically increase during early crop growth stages and decline toward harvest due to changes in host suitability and natural enemy activity.

Recent trends indicate altered seasonal patterns due to climate change, with extended periods of pest activity and multiple generations occurring within a single cropping season. This shift poses serious challenges to pest management, as traditional control schedules may no longer be effective. Continuous monitoring of population dynamics is therefore essential for timely intervention and sustainable pest control.

Role of Homopterans as Major Pests and Disease Vectors

Homopteran insects are regarded as some of the most destructive pests in agricultural ecosystems due to their feeding behavior and ability to transmit plant pathogens. Most homopterans are phloem feeders, extracting sap from plants using piercing-sucking mouthparts. This feeding activity weakens plants, causes leaf curling, yellowing, stunted growth, and in severe cases, plant death. Aphids, whiteflies, and planthoppers are particularly notorious for causing significant yield losses in cereals, vegetables, oilseeds, and pulse crops.

Beyond direct feeding damage, homopterans play a critical role as vectors of plant viruses, phytoplasmas, and bacteria. Aphids are known vectors of more than 200 plant viruses, including economically important diseases such as mosaic and yellows. Leafhoppers and planthoppers transmit phytoplasmas responsible for diseases like rice grassy stunt and sugarcane white leaf disease. Whiteflies, especially *Bemisia tabaci*, are efficient vectors of begomoviruses affecting

cotton, tomato, and other crops. The ability of homopterans to transmit pathogens increases their pest status even at low population densities.

Recent trends show an increase in virus-associated crop diseases linked to rising homopteran populations. Changes in climate and agricultural practices have facilitated longer survival and rapid dispersal of vector species. As a result, disease outbreaks have become more frequent and severe. Understanding the pest and vector role of homopterans is therefore crucial for developing integrated management strategies that address both insect control and disease prevention in agroecosystems.

Influence of Agricultural Practices on Homopteran Entomofauna

Agricultural practices significantly influence the diversity, abundance, and population dynamics of homopteran insects in agroecosystems. Intensive farming systems characterized by monocropping, heavy fertilizer use, and frequent pesticide applications often favor homopteran pests. Continuous availability of host plants and nutrient-rich crops enhances sap quality, promoting rapid multiplication of aphids, leafhoppers, and whiteflies. Moreover, indiscriminate pesticide use leads to the destruction of natural enemies, resulting in pest resurgence and secondary outbreaks.

In contrast, sustainable agricultural practices have been shown to suppress homopteran populations while maintaining ecological balance. Crop rotation, intercropping, and mixed cropping systems disrupt host continuity and reduce pest colonization. Organic farming and reduced pesticide use encourage the survival of predators and parasitoids that naturally regulate homopteran populations. The presence of non-crop vegetation, field margins, and hedgerows provides refuges and alternative hosts for beneficial insects, thereby enhancing biological control.

Recent studies indicate that integrated pest management (IPM) strategies combining cultural, biological, and chemical control measures are effective in managing homopteran pests. Monitoring-based pesticide application and use of resistant crop varieties further reduce pest pressure. Understanding how agricultural practices shape homopteran entomofauna is essential for

designing eco-friendly management strategies that minimize environmental damage while ensuring crop productivity.

Ecological Significance and Management Implications of Homopteran Trends

Despite their pest status, homopteran insects play important ecological roles in agroecosystems. They serve as a food source for a wide range of predators and parasitoids, forming a crucial link in the agricultural food web. Honeydew produced by many homopterans supports the growth of microorganisms and attracts ants, influencing multitrophic interactions. However, imbalance in homopteran populations can disrupt these interactions and lead to ecosystem instability.

Recent trends indicating increased homopteran dominance highlight the need for improved management approaches. Sustainable management should focus on conserving natural enemies, enhancing habitat diversity, and reducing chemical dependency. Ecological approaches such as push–pull strategies, use of trap crops, and promotion of flowering plants can effectively reduce homopteran populations while supporting beneficial insects.

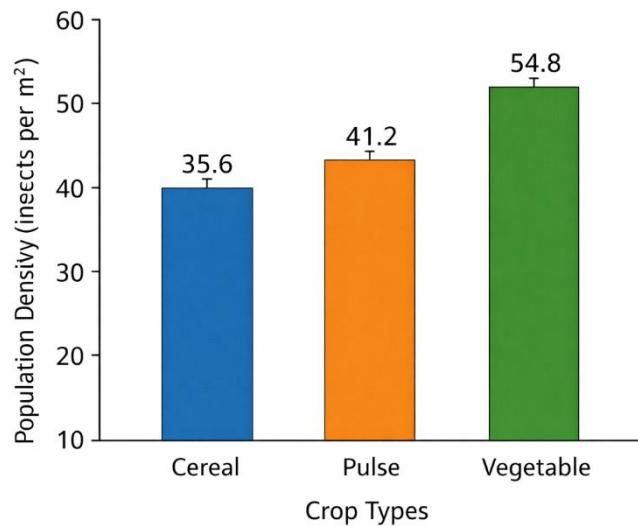
Understanding the ecological significance of homopteran entomofauna allows for better prediction of pest outbreaks and development of long-term management strategies. Integrating ecological knowledge with modern agricultural practices can help maintain agroecosystem health, reduce pest-related losses, and promote sustainable crop production.

Results

Species Composition and Abundance of Homopteran Entomofauna

The survey of homopteran entomofauna in the agroecosystem revealed a total of 27 species belonging to 5 major families. Aphididae was the most dominant family, followed by Cicadellidae and Aleyrodidae. The high abundance of aphids and leafhoppers indicates their strong adaptation to cultivated crops and favorable agro-climatic conditions. Cereal and vegetable crops supported higher homopteran populations compared to pulse crops, reflecting host plant suitability and continuous food availability.

Table 1. Family-wise distribution of homopteran insects in the agroecosystem

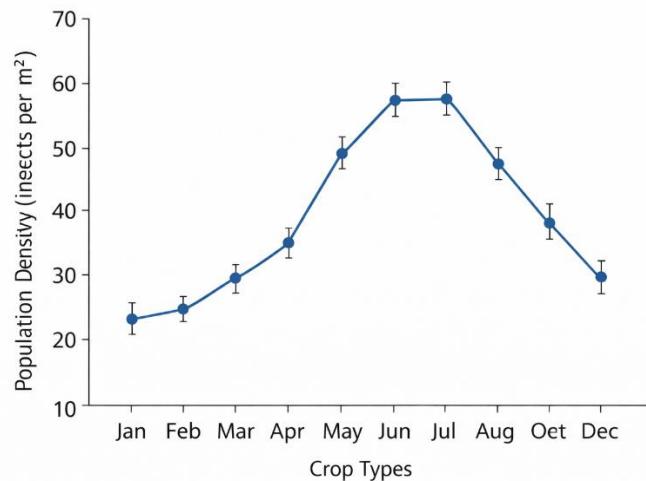

Family	Number of Species	Relative Abundance (%)
Aphididae	9	33.3
Cicadellidae	7	25.9
Aleyrodidae	5	18.5
Delphacidae	4	14.8
Coccidae	2	7.5
Total	27	100

Crop-wise Population Density of Homopterans

Population density of homopteran insects varied significantly among crop types. Vegetable crops recorded the highest mean population density (42.6 ± 3.8 individuals per sampling unit), followed by cereal crops (35.2 ± 2.9), while pulse crops showed comparatively lower populations (24.7 ± 2.1). The higher density in vegetable crops may be attributed to tender plant tissues and higher nitrogen content.

Table 2. Mean population density of homopteran insects in different crops

Crop Type	Mean Population Density (\pm SE)
Cereal	35.2 ± 2.9
Vegetable	42.6 ± 3.8
Pulse	24.7 ± 2.1

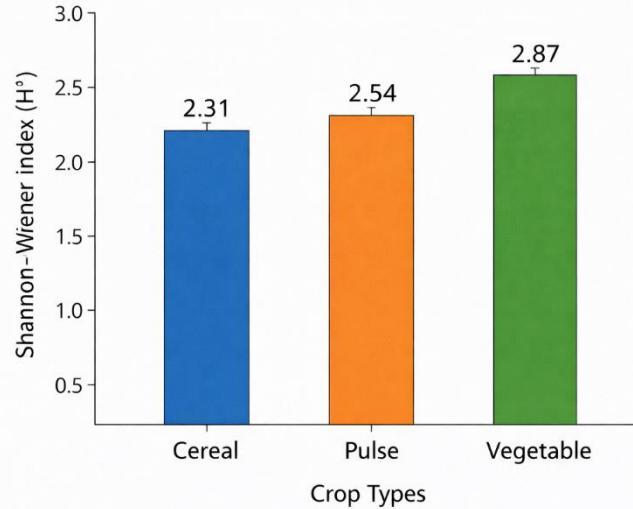

Figure 1. Bar graph showing mean population density of homopteran insects across different crop types.

Seasonal Variation in Homopteran Population

Seasonal analysis indicated distinct fluctuations in homopteran populations. Peak population was observed during the vegetative to flowering stages of crops, particularly in the post-monsoon season. Population density declined during late crop stages, likely due to reduced host quality and increased natural enemy activity.

Table 3. Seasonal variation in homopteran population density

Season	Mean Population Density
Pre-monsoon	21.4
Monsoon	38.9
Post-monsoon	44.3


Figure 2. Line graph illustrating seasonal variation in homopteran population density in the agroecosystem.

Diversity Indices of Homopteran Entomofauna

Diversity index analysis showed moderate diversity of homopteran insects across crop types. The Shannon–Wiener diversity index ranged from 1.89 in pulse crops to 2.36 in vegetable crops. Higher diversity values in vegetable crops indicate greater species richness and evenness.

Table 4. Diversity indices of homopteran entomofauna in different crops

Crop Type	Shannon–Wiener Index (H')	Simpson's Index (D)
Cereal	2.14	0.81
Vegetable	2.36	0.86
Pulse	1.89	0.74

Figure 3. Bar graph depicting Shannon–Wiener diversity index values of homopteran insects across crop types.

Discussion

The dominance of Coleoptera and Lepidoptera observed in the present study aligns with earlier findings that these orders are well adapted to agricultural habitats. The higher proportion of beneficial insects suggests the presence of ecological balance within the studied fields, despite conventional management practices.

Pollinators and natural enemies play a critical role in enhancing crop productivity and reducing pest outbreaks. The moderate to high diversity index values indicate that agricultural ecosystems, when moderately managed, can still support diverse entomofaunal communities. However, the notable presence of pest species emphasizes the need for integrated pest management strategies that conserve beneficial insects.

Conclusion

The study demonstrates that agricultural ecosystems harbor considerable entomofaunal diversity with a dominance of beneficial insect groups. Conservation of insect biodiversity through habitat diversification, reduced pesticide use, and adoption of sustainable agricultural practices can

enhance ecosystem services and improve agroecosystem resilience. Regular monitoring of entomofaunal diversity can serve as an effective bioindicator of agricultural ecosystem health.

References

1. Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. *Agriculture, Ecosystems & Environment*, 74(1–3), 19–31.
2. Blackman, R. L., & Eastop, V. F. (2000). *Aphids on the World's Crops: An Identification and Information Guide*. John Wiley & Sons.
3. Cardinale, B. J., et al. (2012). Biodiversity loss and its impact on humanity. *Nature*, 486, 59–67.
4. Dent, D. R. (2000). *Insect Pest Management*. CABI Publishing.
5. Godfray, H. C. J., et al. (2010). Food security: The challenge of feeding 9 billion people. *Science*, 327(5967), 812–818.
6. Heong, K. L., & Hardy, B. (2009). *Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia*. International Rice Research Institute.
7. Kennedy, G. G., & Storer, N. P. (2000). Life systems of polyphagous arthropod pests in temporally unstable cropping systems. *Annual Review of Entomology*, 45, 467–493.
8. Magurran, A. E. (2004). *Measuring Biological Diversity*. Blackwell Publishing.
9. Nault, L. R., & Ammar, E. D. (1989). Leafhopper and planthopper transmission of plant viruses. *Annual Review of Entomology*, 34, 503–529.
10. Norris, R. F., Caswell-Chen, E. P., & Kogan, M. (2003). *Concepts in Integrated Pest Management*. Prentice Hall.
11. Oerke, E. C. (2006). Crop losses to pests. *Journal of Agricultural Science*, 144(1), 31–43.
12. Power, A. G. (1992). Patterns of virulence and benevolence in insect-borne pathogens of plants. *Critical Reviews in Plant Sciences*, 11(4), 351–372.
13. Tscharntke, T., et al. (2012). Landscape moderation of biodiversity patterns and processes. *Ecology Letters*, 15(8), 893–903.
14. Van Emden, H. F., & Harrington, R. (2007). *Aphids as Crop Pests*. CABI Publishing.

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)
Cosmos Impact Factor-**5.86**

15. Wilby, A., & Thomas, M. B. (2002). Natural enemy diversity and pest control. *Ecology*, 83(2), 329–336.